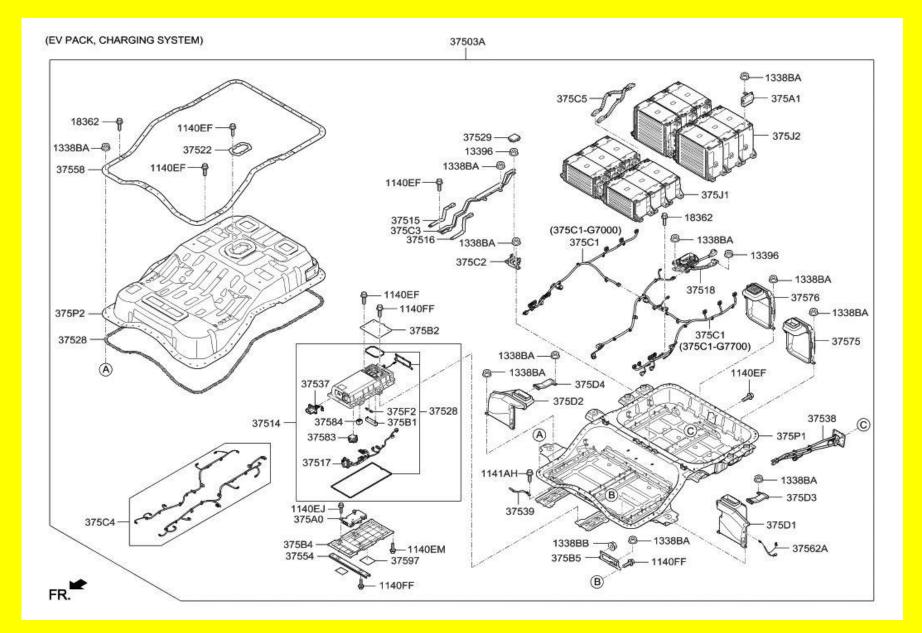
VE3LC's Electric Vehicle 2018 Hyundai IONIQ

Basic Specification:

Battery Pack: Lithium Ion Polymer

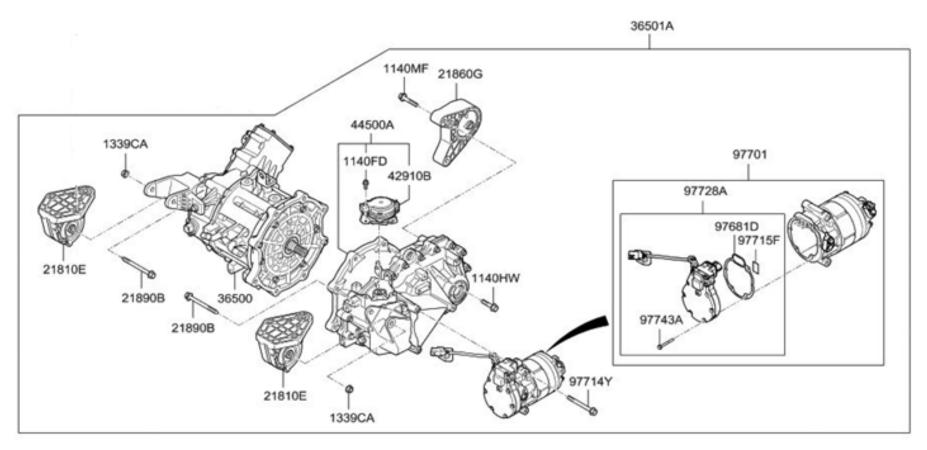

- 28.0 kWh
- 360 Volts nominal potential
- 96 cells arranged in modules
- cooling by forced air
- charging and health maintained by an integrated "Battery Management System"

Motor:

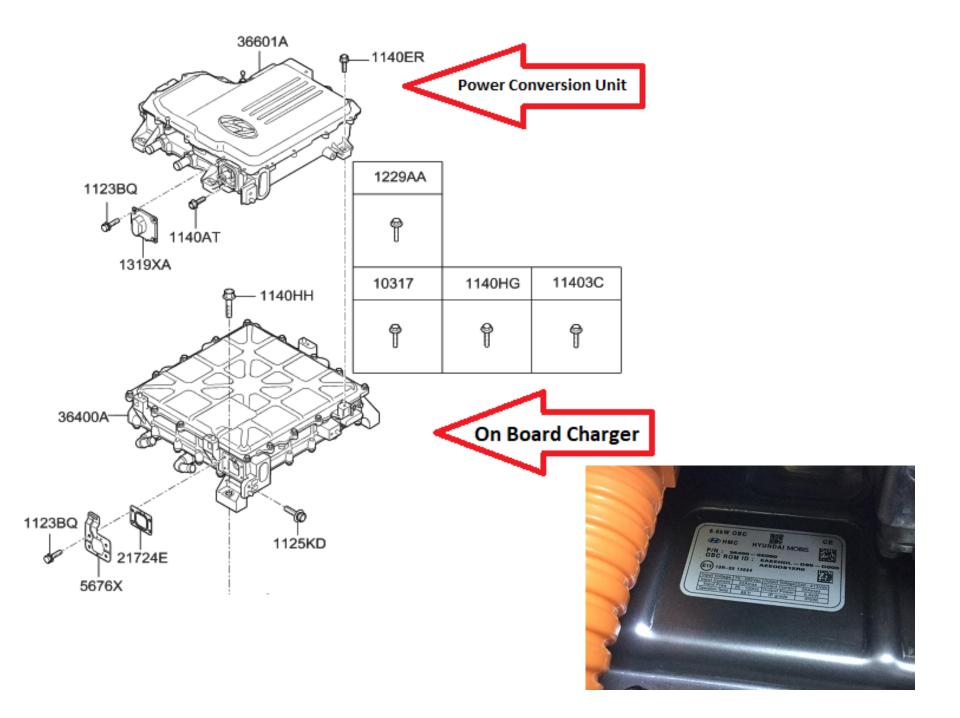
- 3 phase, Synchronous AC, neodymium permanent magnetic rotor revs up to 11,000 rpm
- 118 hp, 88 kW
- 218 ft-lbs torque throughout RPM range
- works in forward or reverse directions
- integrated into front wheel drive transaxle
- provides regenerative braking

Ioniq 28 kWh, 360 volt Battery Pack

Battery Pack Replacement cost: <u>\$16,116</u> US not including installation


Home > Hyundai 37501G7200 Parts Questions This part fits the vehicle you selected: My Vehicle: 2017 Hyundai Ionig Electric Sedan - 5Door 5P; Motor - 88KW; Electric; **Change Vehicle** The vehicle options this part fits: Fit Note: EV PACK, CHARGING SYSTEM(INLET) - AMERICAN TYPE C · Production Date: 11/2016-Hyundai Part No.: 37501-G7200 Your Price: \$16116.04 CALL TECHLINE-BATTERY SYSTEM A Retail Price \$18809.57 Part Description Battery System Assembly You Save: \$2693.53 Hyundai. This genuine Hyundai part is guaranteed by Hyundai's factory warranty. Manufacturer Qty: 1 ADD TO CART This part is found within these 3 diagrams below Ships in 1-3 Business Days Diagram: BATTERY & CABLE (01/03)> [Motor - 88KW] This part is Part Code 37503A in the diagram Enlarge Diagram Why choose Hyundai Parts Deal **Dedicated Service Related Parts** Your complete satisfaction is our #1 Shop for related parts in: Engine > Battery & Cable goal Lowest Prices Genuine Genuine Genuine Genuine Best deals on genuine OE parts from 1 Hvundai Hvundai Hvundai Hyundai dealerships Parts Parts Parts Parts

Display of Power Conversion Unit and Transaxle Assembly


Simplicity of Electric Motor / Transaxle Assembly

There is No Conventional Transmission

Ioniq under the Hood

Label on Ioniq On Board Charger

Operating Expenses Comparison for 20,000 Km driving per year Convention *modern* ICE (Internal Combustion Engine) Car

Assuming fuel consumption rate of 9 litres per 100 km and \$1.10 per litre.

• 20,000/100 x 9 x 1.10 = <u>\$1980</u>

Calculations for Same Distance with Hyundai Ioniq BEV (Battery Electric Vehicle)

Assuming cost of electricity in Ontario, incremental off-peak rate of is about 8 cents / kWh and the following car energy charging and range per charge specifications are:

- Nominal Driving range per full charge = 200 km (often in summer > 250 kms)
- Level 2 charging power = 4800 watts
- Time to charge a fully depleted battery = 6 hours
- Energy for a full charge = 6 x 4800 = 28.8 kWh
- Cost for complete charge cycle of fully depleted battery = 28.8 x .08 = \$ 2.30

Cost of electricity to drive 20,000 km = 20,000/200 = 100 x \$2.30 = \$230

Approximate annual fuel cost savings BEV vs ICE car = \$1980 - \$230 = \$1750

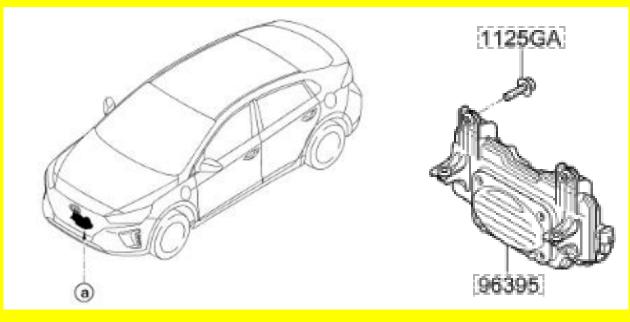
Other savings of the BEV

- No Oil changes.
- Minimal brake maintenance due to regenerative breaking.
- Simplicity in mechanical design of drive train.
- No engine air filter to replace. Only filter is for outside air into cabin.
- Typical savings in insurance costs.
- Free Level 2 Charging at many locations.

Ontario Green Vehicle Licence Plate Program

- Available for Battery Electric (BEV) and <u>Plug-in</u> Hybrid Electric Vehicles (PHEV)
- Also available for Hydrogen Powered Vehicles
- Non Plug-in Hybrid EVs don't qualify.
- •Available in English & French : GV Green Vehicle or VE Véhicule Écologique
- Gives unrestricted access to HOV and (HOToll) lanes.

Some Unique Features of an Electric car:


- Cabin Heat provided by an Energy Efficient "Heat Pump"
- Heat Pump also does Air Conditioning
- Cabin Climate Control can be directed on Driver Only
- Regenerative Braking (braking reclaims energy) Traction Drive Motor generates power to Re-charge Battery
- Regenerative Braking

Allows for one pedal "Go & Braking" Function

- 12 VDC electrics run by Lead/Acid battery Recharged from Big Battery by Inverter
- Optional Scheduled Charging and Cabin Pre-Heating/Cooling

Electric Cars are so <u>QUIET</u> in Operation Therefore, by Regulation, they must have VESS VESS= Virtual Engine Sound System

VESS in Hyundai Ioniq BEV

EV Charging

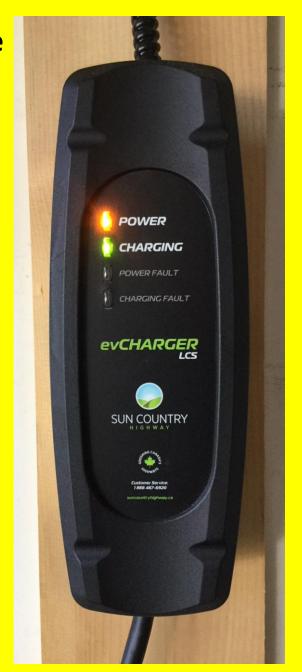
• Level 1

Uses Standard 120 VAC fall plug outlet 12 Amps, Charges slow taking up to 24 hours.

• Level 2

Uses 240 VAC typically with hardwire connection to electrical panel. Reasonably quick taking up to 6 hours.

• Level 3

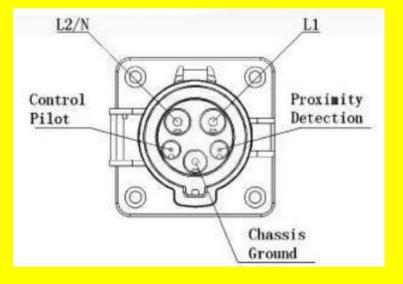

480 V DC, provided at some on-the-road charging stations. Typically will charge up to 80% SOC within 30 minutes.

My Level 2 Charger Self Installed in Garage

• Sun Country Highways SCH25 \$829 Cdn + shipping & tax.

•Chargers my Ioniq BEV if battery fully depleted in about 6 hours

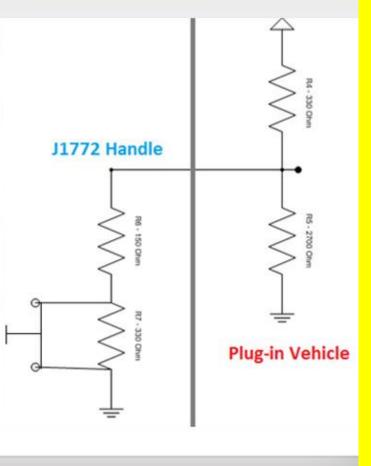
- Chosen for light power draw on the 100 amp residential panel.
- 4800 watts, 240 VAC, draws 20 amps
- 25 foot charging cable

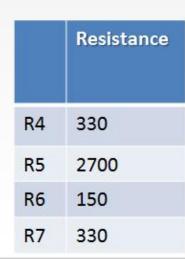


SAE J1772 Connector Standard For most Electric Vehicles in North America except Tesla

Level 1 (120 VAC – 12 – 16 Amps)

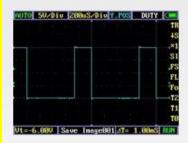
and


Level 2 (240 VAC – up to 80 Amps)


"Proximity" Pin connection on J 1772 plug

J1772 Proximity

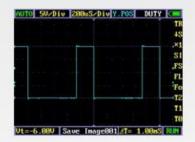
The J1772 Proximity circuit is present in the Electric Vehicle and the J1772 plug. It uses a voltage divider circuit with resistors in Parallel and series to achieve different measured voltages for each state.



State	Voltage on Proximity pin
Not Connected	4.5v
Button Pressed	3.0v
Connected	1.5v

"Pilot" Pin connection on J 1772 plug

J1772 Pilot Signal



The J1772 Pilot is a 1khz +12V to -12V square wave, the voltage defines the state. The EV adds resistance pilot to Ground to vary the voltage. The EVSE reads the voltage and changes state accordingly.

State	Pilot High	Pilot Low	Frequency	EV Resistance	Description
State A	+12V	N/A	DC	N/A	Not Connected
State B	+9V	-12V	1000hz	2.74k	EV Connected (Ready)
State C	+6V	-12V	1000hz	882	EV Charge
State D	+3V	-12V	1000hz	246	EV Charge Vent. Required
State E	0 V	0V	N/A		Error
State F	N/A	-12V	N/A		Unknown/Error

"Pilot" Pin connection on J 1772 plug, duty cycle of 1 kHz also determines max available current from charger.

J1772 Duty Cycle

The J1772 Pilot is a 1khz +12V to -12V square wave, the Duty cycle (ratio high state to low state) determined the maximum available current. The EVSE sets the duty cycle the EV must comply to original setting or changes to the duty cycle.

6A - 51A
Amps = Duty cycle x 0.6
Duty cycle = Amps / 0.6
51A - 80A
Amps = (Duty Cycle - 64) 2.5
Duty cycle = (Amps / 2.5) + 64

Amp	Duty Cycle	Amp	Duty Cycle
6A	10%	40A	66%
12A	20%	48A	80%
18A	30%	65A	90%
24A	40%	75A	94%
30A	50%	80A	96%

High Capacity Quick Charging

Combined Charging System "CCS"

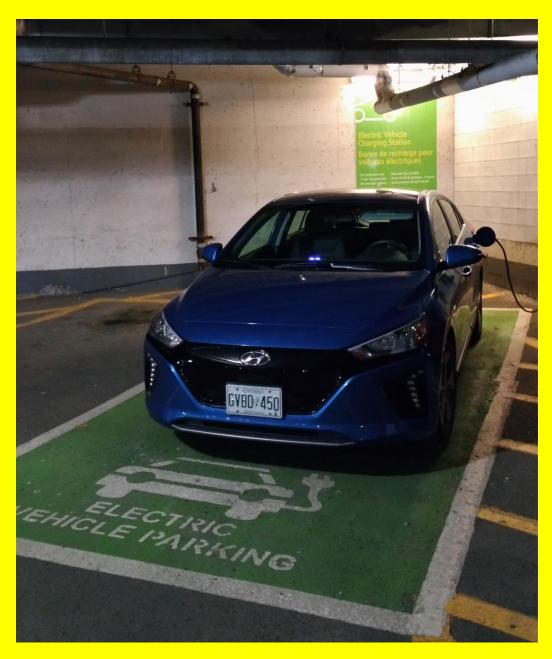
2 additional pins to J 1772 Plug carry 200 to 450 VDC up to 90 kW Adopted by Audi, BMW, Daimler, Ford, GM, Hyundai, Porsche, Volvo and VW

But not Nissan (Leaf)

High Voltage DC Connections

Nissan Leaf uses the "CHAdeMO" standard for High Capacity Level 3 Quick Charging


Charging Ports of Nissan Leaf Level 3 - CHAdeMO on right Level 1 & 2 – J 1772 on left


Most Public Level 3 Chargers provide both CCS and CHAdeMO Charge Cables

EV Parking in the World Exchange Building Parking Lot The charge is free but you pay for parking there.

There are lots of free promotional Level 2 Charging Stations. Most Car Dealerships provide free Level 2 Charging

Free Charging At Place d'Orleans Shopping Centre

Android "Torque" Smart Phone Application to Monitor Workings of Electric Car from OBD2 Port

Bluetooth OBD2 Dongle


Torque OBD2 App

Before Charge Start

Charging Continuing

Monitoring Demand for power as you Drive

Some Current Battery Electric Vehicles Available

Battery Capacity and Ranges are changing every year.

Smart Car for 2 Electric	145 km	17.6 kWh
Ford Focus Electric	185 km	34.0 kWh
 Hyundai Ioniq Electric 	200 km	28.0 kWh
Kia Soul Electric	179 km	27.0 kWh
Nissan Leaf	242 km	40.0 kWh
VW E-Golf	201 km	34.0 kWh
Chevy Bolt	383 km	60.0 kWh
Tesla Model 3	354 km	50.0 kWh
• BMW i3	183 km	60 Ah ??
Tesla Model S	416 km	75 kWh
Tesla Model X	381 km	75 kWh

Testla Model 3 - top EV in sales

- 5455 sold in Canada May to November this year so far
- \$46, 000 to \$64,100 (up to 500 Km on biggest battery)
- Also available with Dual Motor AWD (3.5 secs 0 to 100 km/h)

Tesla Model 3 Interior

- Clean Dash, No Instrumentation Cluster
- Driver interfaces with car through 15" Touch Screen

Ron, VE3LBU's Nissan "Leaf" BEV

- 40 kWh Lithium Ion Battery Pac
- 147 hp electric motor
- nominal range 241 kms
- "E-Pedal" one pedal go-stop control
- Level 2 recharge time about 7.5 hrs

Toyota Prius Prime Plug-In Hybrid EV owned by Nicole, VE3GIQ

- 1.8 L Atkinson Cycle Gas Engine (long power stroke for high efficiency)
- Gas mileage: about 4.3 L/100 km
- CVT Transmission
- Permanent Magnet Synchronous AC Electric Motor, 71 hp
- Lithium-ion Battery, 8.8 kWh, 352 volts
- Recharge Time: about 5 hours at 120 VAC
- Battery Electric range: about 40 km

What we can expect for the Future

- Continued Improvement in EV Li-Ion capacity and <\$ manufacturing cost.
- Solid State Batteries show promise of higher energy density and safety
- Super Capacitor development for Spurt Energy for high EV acceleration
- Changes in Electrical Codes and Building Codes to Facilitate EV Charging
- EV technology for Public Transportation New Flyer Wpg a leader
- Induction Charging EMI concerns

Questions ??